STORMWATER MANAGEMENT REPORT

"THE RIDGE" TOWNHOUSE DEVELOPMENT

196 Ridge Street West Lorne, Ontario

Y. C. LIU ENGINEERING 39 McNaughton Ave. West, Chatham Ontario N7L 1R2 TEL: (519) 351-9612 FAX : (519) 351-5526

> 01-April-2022 File: 18-222

39 McNaughton Ave. W., Chatham, Ontario Canada, N7L 1R2

Bus: 519-351-9612 - Fax: 519-351-5526

April 1, 2022

File No: 18-222

Ms. Heather James, MES (PI.), MCIP, RPP Planner Municipality of West Elgin 22413 Hoskins Line Rodney, Ontario NOL 2C0

RE: <u>Stormwater Management Plan for a new Townhouse Development for Arvai Developments Inc.</u>, <u>located 196 Ridge Street, West Lorne, Ontario.</u>

Dear Heather,

This report presents the results of a stormwater management assessment carried out for a new townhouse development, on a 0.68-hectare property at the above-referenced site.

The site is currently un-developed grassed land with a pre-developed run-off coefficient of c=0.2. The proposed changes to the site include the construction of 4 new Townhouse Buildings, (Building A - 731.76m², Building B - 731.76 m², Building C - 609.84 m², Building D - 609.84m²) a new private asphalt road (1,216 m²), 22 new concrete driveways and concrete patios. The proposed development results in 1,743m² of grassed area, and 5,046m², of impermeable surfaces. Based on run-off coefficients for grassed and impervious areas (asphalt, building, concrete, etc.) of 0.25 and 0.90 respectively, the weighted run-off coefficient was calculated to be c=0.72.

The Municipality of West Elgin has indicated that a Stormwater Management Plan would be required in order to control the stormwater run-off rate to the pre-developed flow rate. On-site stormwater detention is required to store the excess volume from the 100-year post-developed storm event.

The property is assessed to the the Arvai Drain, as 375mmø HDPE municipal storm drain. The Arvai drain was installed in 2021 to outlet the proposed development through the adjacent farmland to the West of the subject property into the Trigger Drain.

Drawing SP-1 to SP-5 in Appendix B provides a Site and Storm Water Plan of the property and the proposed development, as well as all necessary details and references.

1. Introduction

The purpose of this assessment was to provide drainage of the site in accordance with municipal requirements. It was also necessary to provide temporary on-site storage of appropriate storm water detention volumes.

The Municipality of West Elgin requires that the storm sewer system be designed to the pre-developed flow rates. The excess volume from the post-developed 100-year storm versus the 100-year pre-developed flow capacity must be stored on site.

The stormwater management system requirements are summarized in this report.

2. Procedure

The procedure included the following steps:

- 1. Review of Site elevation survey and data collection
- 2. Review of Site Plan and determination of land use/cover before and after development
- 3. Assessment of local rainfall Intensity Duration and Frequency data/equations
- 4. Calculation of peak 100-year pre-development flows using the "Rational Method"
- 5. Sizing of outflow pipes and slopes
- 6. Estimating required detention storage volume using the "Modified Rational Method"
- 7. Design of proposed grades and elevations relating to construction.
- 8. Preparation of report

3. Findings

3.1 General Site Conditions

The existing site is relatively flat with an average slope of 1.0%, sloping from the perimeters of the site to an existing low spot on the neighbouring property to the south of the subject property. The grassed areas in the rear yard of the residential properties to the North of the subject property currently drain overland onto the subject property and infiltrate into the grassed area.

There is an existing flow length of 124m and a slope of 1.0%, the time of concentration was determined to be 32 minutes, resulting in a pre-developed flow rate of 35.85L/s, based on a run-off coefficient of 0.20, and using the 1:2-year storm intensity.

The Arvai Drain, which was installed specifically to outlet the subject property and the rear yards of the adjacent residential properties to the north, which currently drain onto the subject property. The Arvai drain is a 375mmø HDPE pipe sloped at 0.4%. This pipe has an approximate capacity of 120 L/s.

3.2 Calculations

The attached spreadsheet in Appendix A documents the calculations used and identify the requirements of construction to meet the stormwater management plan. The spreadsheets are summarized as follows:

- 1. Table 1 presents the intensity/duration/frequency data that is relevant to this site. The data is in the form of the Dutton Dunwich Development Standards.
- 2. Table 2 documents the predevelopment and post development land cover factors and areas. All data is based on the site plan drawing.
- 3. Table 3 documents the maximum outflow based on the 100-year predevelopment storm. It also calculates the proposed Restriction device in order to back flows up that exit the containment area.
- 4. Table 4 provides the pipe sizing calculations based on the 2-year intensity and a Time of concentration of 15 minutes.
- 5. Tables 5, and 6 are applications of the modified rational method to determine the maximum required storage capacity under 2-year and 100-year storm conditions, respectively.
- 6. Table 7 provides a design of the storage pond including depths, areas and total storage volumes.

The required drainage and grading details are shown on Drawing SP-1 to SP-5 in Appendix B.

4.0 Conclusions

Drainage of this watershed will be accommodated by 4 new catchbasin manholes withing the private driveway, 2 catch basins within the grassed swales along the north property line and 3 rear-yard catchbasins within the grassed swales along the south property line. All catch basins and catchbasin manholes are connected with varying sizes of PVC-SDR35 (or PVC-SDR28) storm pipe that will collect stormwater and outlet it to the DICB installed at the end of the Arvai drain located on the West property line.

A restrictor plate will be used to control the volume of water that exits the property via the storm pipes. This restrictor plate will be located on the 300mm diameter PVC outlet of CBMH 4. Provisions should be made for maintenance of all storm pipes on site, at least twice a year, as well as after all major storm events, by the property Owner.

The proposed stormwater management system provides peak flow attenuation for the 100-year post development flow. A 110mm diameter restrictor plate on the outlet of CBMH4 will back up flows to a rate slightly greater than the 100-year pre-developed flow rate from the site of 35.85L/s. The orifice restrictor plate will have a capacity of 38.0L/s. Since the Arvai drain has a capacity of 120 L/s and was specifically installed to outlet this property, this increase of 2.15 L/s will not have a negative impact on the neighboring properties or have a negative effect on the Arvai drain. A flow rate of 38 L/s is sufficient to outlet the property and provide 100-year post-developed stormwater detention on site with surface ponding rather than underground storage tanks.

The stormwater design is to use the private roadway as stormwater detention area as well as the grassed areas in the rear yard and sideyards of the property. The catchbasins will collect the water and direct it towards the last Catch basin manhole (CBMH4). This last manhole will be equipped with the orifice restrictor plate mentioned above. The maximum 100-year ponding elevation will be 213.95m while the finished floor elevation of the building will be 214.15m, creating a freeboard of 200mm.

In the event that the 100-year storm is exceeded, the water will overflow the 100-year elevation of 213.95m at the asphalt entrance to the site. It will also overflow the concrete curb along the west property line and drain directly into the Ditch Inlet Catch basin, unrestricted. Line drain and continue to drain. The property lines have been graded above the 100-year elevation to ensure that the excess water will only overflow at the outlet location and entrance, and not onto neighboring property. The finished floor is also set higher to ensure that water does not enter the building.

Below is a table outlining the catchment areas and their corresponding depths, areas, and volumes:

Catchment Area	Depth (mm)	Area (sq. m.)	Volume (cu.m.)						
1	300	305	30.5						
2	300 330		33.0						
3	300	330	33.0						
4	300	520	52.0						
5	200	50	3.3						
6	200	65	4.3						
7	200	65	4.3						
		PIPE STORAGE	29.1						
Total Storage Volume 189.6m ³									

This total volume of 189.6m³ meets that required for the 100-year post-development design storm of 187m³.

The proposed stormwater management system maximizes the 100-year surface ponding within the road area and outlets the stormwater to the Arvai drain at near pre-development flow rates.

If any questions are to arise from this Stormwater Management Report, please do not hesitate to contact our office at your convenience.

Respectfully Submitted,

Y.C. LIU ENGINEERING

Chet Liu, P.Eng. Project Engineer

Encls/

Appendix A – Watershed A Calculations – Tables 1 to 7
 Appendix B – Drawings SP-1 to SP-5

APPENDIX A – Watershed A Calculations

(Tables 1 to 7)

TABLE 1 - IDF CURVE DATA -DUTTON DUNCICH DEVELOPMENT STANDARDS

Dutton Dunwich Development Standards IDF Information (2010)

Using the equation: $I = a/(t+b)^{c}$

Return Period	Coeffic		
	а	b	С
2-Yr	604.9	4.862	0.728
5-Yr	477.2	2.475	0.617
10-Yr	549.3	2.819	0.616
25-Yr	564.3	3.111	0.578
50-Yr	616.6	2.819	0.570
100-YR	702.4	2.936	0.573

Time (min)	Time (T) (hrs)			Rainfall Ir	ntensity (R) (mm/l	hr)	
		2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
5	0.08	114.3	137.9	154.8	168.3	191.0	214.4
10	0.17	84.8	100.6	114.1	127.5	144.1	162.0
15	0.25	68.7	81.7	93.2	105.8	119.4	134.3
20	0.33	58.3	267.3	80.0	91.9	103.7	116.7
30	0.50	45.6	55.7	64.0	74.6	84.3	94.8
35	0.58	41.3	51.0	58.6	68.8	77.8	87.5
40	0.67	37.9	47.2	54.3	64.1	72.4	81.5
45	0.75	35.1	44.1	50.7	60.1	68.0	76.5
50	0.83	32.8	41.4	47.7	56.8	64.3	72.3
55	0.92	30.8	39.2	45.1	53.9	61.0	68.6
60	1	29.0	37.2	42.9	51.4	58.2	65.4

TABLE 2 : C- Factor Weighting and Areas

PRE-DEVELOPED			
Pre-developed Runoff Coefficient (C1):		0.20	unitless
Total Area (m^2) :		6790	m^2
Total Area (m):		0/09	m
Total Area (ha):		0.68	ha
POST-DEVELOPMENT			
Grass Area (A _{g1}):		1743	m²
Grass Runoff Coefficient (C_g):		0.2	unitless
Impervious (ie.Asphalt,Building,Concrete) Area (A _{i1}):		5046	m²
Impervious Runoff Coefficient (C _i):		0.90	unitless
Gravel Area (A _{gr1}):		0	m²
Gravel Runoff Coefficient (C gr):		0.80	unitless
Weighted Runoff Coefficient (C1):	$C_1 = (A_{g1} * C_g + A_{gr1} * C_{gr} + A_{i1} * C_i) / (A_{g1} + A_{gr1} + A_{i1})$	0.72	unitless
Total Area (m²):		6789	m²
Total Area (ha):		0.68	ha

TABLE 3- PREDEVELOPMENT FLOW REQUIREMENTS (100-YR)

Using the IDF Information from Dutton Dunwich Development Standards

COMPOSITE AREA - PRE DE	OMPOSITE AREA - PRE DEVELOPMENT (C =0.2)							
DURATION	INTENSITY	QPRE A x C(COMPOSITE)	QPRE AxCxI					
(min.)	(mm/hr)	(ha)	(L/s)					
5	214	0.136	81.04					
10	162	0.136	61.25					
15	134	0.136	50.79					
20	117	0.136	44.12					
25	104	0.136	39.40					
30	95	0.136	35.85					
35	87	0.136	33.07					
37	85	0.136	32.11					
40	81	0.136	30.80					
45	76	0.136	28.92					
50	72	0.136	27.32					
55	69	0.136	25.94					
60	65	0.136	24.74					
65	63	0.136	23.68					
70	60	0.136	22.74					
75	58	0.136	21.89					
80	56	0.136	21.12					
85	54	0.136	20.42					

TIME OF CONCENTRATION Using FAA Method

Tc=3.26(1.1-C)L^{0.5}/(100*S)^{0.333}

L (longest flow path) =	124.5	т
C =	0.2	
Slope =	0.010	ft/ft or m/m
tc =	32.7	min.

PROPOSED RESTRICTION - Orifice on outlet of CBMH - 100-YR Release Rate

Cd =	0.6 unitless	
Dia. =	110 mm	MIN VALUE
Area =	9503.3 mm ²	
Area =	0.0095 m ²	
g =	9.81 m/s ²	
H =	2.26 m	
Q =	<mark>0.038</mark> m ³ /s	
Q =	38.0 L/s	

TABLE 4 : PIPE SIZING AND DESIGN

Manhole/Downsp	out	Α	rea		A	C .		System	2-Year	Peak		Pi	ре		%	Velocity
From	То	lr	ncr.	"C"	Incr.	Cumm.	Тс	low Tim	Intensity	Flow	Dia.	Slope	Length	Cap.	Capacity	Full Flow
		m²	hectares				min.	min.	mm/hr.	L/s	mm	%	т	L/s		m/s
DS BLDG. 'A' (S/E)	CBMH1	183.0	0.02	0.9	0.016	0.02	15.00	15.00	67.8	3.10	150.00	0.50	34.00	11.7	26.5	0.66
DS BLDG. 'B' (N/E)	CBMH1	183.0	0.02	0.9	0.016	0.02	15.00	15.00	67.8	3.10	150.00	0.50	34.00	11.7	26.5	0.66
CBMH1	CBMH2	588.0	0.06	0.9	0.053	0.09	15.00	15.00	67.8	16.19	450.00	0.25	28.00	154.3	10.5	0.97
DS BLDG. 'A' (S/W)	CBMH1	183.0	0.02	0.9	0.016	0.02	15.00	15.00	67.8	3.10	150.00	0.50	34.00	11.7	26.5	0.66
DS BLDG. 'B' NORTH/WEST	CBMH1	183.0	0.02	0.9	0.016	0.02	15.00	15.00	67.8	3.10	150.00	0.50	34.00	11.7	26.5	0.66
DS BLDG. 'A' (N)	CB2	366.0	0.04	0.9	0.033	0.03	15.00	15.00	67.8	6.21	200.00	0.50	60.00	25.1	24.7	0.80
CB2	STM SEWER	450.0	0.05	0.2	0.009	0.04	15.00	15.00	67.8	7.91	200.00	0.50	26.00	25.1	31.5	0.80
CBMH2	CBMH3	480.0	0.05	0.9	0.043	0.20	15.00	15.00	67.8	38.45	450.00	0.25	30.00	154.3	24.9	0.97
CBMH3	CBMH4	632.0	0.06	0.9	0.057	0.26	15.00	15.00	67.8	49.17	450.00	0.25	37.00	154.3	31.9	0.97
DS BLDG. 'C' (N)	CB1	366.0	0.04	0.9	0.033	0.03	15.00	15.00	67.8	6.21	200.00	0.50	54.00	25.1	24.7	0.80
CB1	CBMH4	200.0	0.02	0.2	0.004	0.04	15.00	15.00	67.8	6.96	200.00	0.50	21.00	25.1	27.7	0.80
DS BLDG. 'C' (S)	CBMH4	366.0	0.04	0.9	0.033	0.03	15.00	15.00	67.8	6.21	200.00	0.50	54.00	25.1	24.7	0.80
DS BLDG. 'D' (N)	CBMH4	366.0	0.04	0.9	0.033	0.03	15.00	15.00	67.8	6.21	200.00	0.50	54.00	25.1	24.7	0.80
DS BLDG. 'B' & D	CBMH4	1386.0	0.14	0.8	0.111	0.11	15.00	15.00	67.8	20.90	200.00	0.88	118.00	33.3	62.8	1.06
CBMH4	OUTLET	775.0	0.08	0.9	0.070	0.54	15.00	15.00	67.8	38.00	300.00	0.40	5.00	66.2	57.4	0.94

(RESTRICTED)

Manning's Formula for Outlet Pipe Size:

Diameter:	0.150	т	0.450	т	0.200	т	0.200	т	0.300	т
Slope:	0.500	%	0.250	%	0.500	%	0.880	%	0.400	%
Mannings "n" (SDR35-PVC):	0.012	unitless	0.012	unitless	0.012	unitless	0.012	unitless	0.012	unitless
X-sectional Area (A):	0.018	m ²	0.159	m ²	0.031	m ²	0.031	m ²	0.071	m²
Wetted Perimeter (P):	0.471	т	1.414	т	0.628	т	0.628	т	0.942	т
Hydraulic Radius (R):	0.038	т	0.113	т	0.050	т	0.050	т	0.075	т
Flow Capacity (Q=1/nA(R^0.667)(S^0.5)):	0.012	m³/s	0.154	m³/s	0.025	m³/s	0.033	m³/s	0.066	m³/s
Flow Capacity:	11.7	L/s	154.3	L/s	25.1	L/s	33.3	L/s	66.2	L/s

COMPOSITE AREA - POST DE	VELOPMENT (C =0.72)				•			
		QPOST	QPOST	STORM VOLUME	OUTFLOW RATE	RELEASE VOLUME	REQUIRED STORAGE	REQUIRED STORAGE
DURATION	INTENSITY (mm/hr)	A x C(COMPOSITE) (ha)	A x C x I (L/s)	(L)	(L/s)	(L)	(L)	m ³
5	114	0.4896	157	47008.2	38	11400	35608.2	35.6
10	85	0.4896	116	69749.1	38	22800	46949.1	46.9
15	69	0.4896	94	84711.3	38	34200	50511.3	50.5
20	58	0.4896	<u>80</u>	95915.8	38	45600	50315.8	50.3
25	51	0.4896	70	104921.4	38	57000	47921.4	47.9
30	46	0.4896	62	112486.2	38	68400	44086.2	44.1
35	41	0.4896	57	119034.2	38	79800	39234.2	39.2
40	38	0.4896	52	124825.4	38	91200	33625.4	33.6
45	35	0.4896	4 8	130031.0	38	102600	27431.0	27.4
50	33	0.4896	4 5	134769.3	38	114000	20769.3	20.8
55	31	0.4896	42	139125.6	38	125400	13725.6	13.7
60	29	0.4896	40	143163.7	38	136800	6363.7	6.4

TABLE 5 - FLOW STORAGE REQUIREMENTS (2 - YR)

TABLE 6 - FLOW STORAGE REQUIREMENTS (100 - YR)

COMPOSITE AREA - POST D	<u>EVELOPMENT (C =0.72)</u>				•	2		
		QPOST	QPOST	STORM VOLUME	OUTFLOW RATE	RELEASE VOLUME	REQUIRED STORAGE	REQUIRED STORAGE
DURATION	INTENSITY	A x C(COMPOSITE)	A x C x I (L/s)	(L)	(L/s)	(L)	(L)	m ³
	(mm/hr)	(ha)						
5	214	0.4896	294	88152.3	38	11400	76752.3	76.8
10	162	0.4896	222	133252.0	38	22800	110452.0	110.5
15	134	0.4896	184	165745.5	38	34200	131545.5	131.5
20	117	0.4896	160	191950.2	38	45600	146350.2	146.4
25	104	0.4896	143	214300.5	38	57000	157300.5	157.3
30	95	0.4896	130	234008.2	38	68400	165608.2	165.6
35	87	0.4896	120	251771.6	38	79800	171971.6	172.0
40	81	0.4896	112	268033.1	38	91200	176833.1	176.8
45	76	0.4896	105	283092.6	38	102600	180492.6	180.5
50	72	0.4896	99	297163.7	38	114000	183163.7	183.2
55	69	0.4896	94	310404.8	38	125400	185004.8	185.0
60	65	0.4896	90	322936.6	38	136800	186136.6	186.1
65	63	0.4896	86	334853.8	38	148200	186653.8	186.7
70	60	0.4896	82	346232.2	38	159600	186632.2	186.6
75	58	0.4896	79	357133.4	38	171000	186133.4	186.1
80	56	0.4896	77	367608.4	38	182400	185208.4	185.2
85	54	0.4896	74	377699.7	38	193800	183899.7	183.9
90	52	0.4896	72	387443.4	38	205200	182243.4	182.2
95	51	0.4896	70	396870.5	38	216600	180270.5	180.3
300	27	0.4896	36	656209.3	38	684000	-27790.7	-27.8
140	41	0.4896	56	470941.6	38	319200	151741.6	151.7
150	39	0.4896	54	485402.9	38	342000	143402.9	143.4
160	38	0.4896	52	499309.0	38	364800	134509.0	134.5
100	49	0.4896	68	406007.6	38	228000	178007.6	178.0
100	49	0.4896	68	406007.6	38	228000	178007.6	178.0

	Max. Pond Elevation	T/G Elevation	Elevation - Outlet Invert	Max. Pipe Excav.Depth	Min. Pipe Cover *	Ponding Area	Max. Pond Depth	Division Factor**	Ponding Volume
	т	т	т	т	т	m²	т	unitless	m³
CATCHMENT AREA 1	213.95	213.65	212.65	1.30	1.00	305.0	0.30	3	30.5
CATCHMENT AREA 2	213.95	213.65	212.65	1.30	1.00	330.0	0.30	3	33.0
CATCHMENT AREA 3	213.95	213.65	212.65	1.30	1.00	330.0	0.30	3	33.0
CATCHMENT AREA 4	213.95	213.65	212.65	1.30	1.00	520.0	0.30	3	52.0
CATCHMENT AREA 5	213.95	213.75	212.65	1.30	1.10	50.0	0.20	3	3.3
CATCHMENT AREA 6	213.95	213.75	212.65	1.30	1.10	65.0	0.20	3	4.3
CATCHMENT AREA 7	213.95	213.75	212.65	1.30	1.10	65.0	0.20	3	4.3
PIPE STORAGE						Pipe Area mm ²	Total Pipe Length m		Pipe Storage m ³
150mm PIPE						17671.4	260.0		4.6
200mm PIPE						31415.9	300.0		9.4
450mm PIPE						159043.0	95.0		15.1
						MAX. TOTAL	POND VOLUME		189.6

TABLE 7 - 100-YEAR STORAGE AVAILABILITY (PONDING TO ELEVATION APPROX. 213.95)

Available storage is adequate to hold the excess flow from the 100 year post-development storm as per table 6.

APPENDIX B – Drawings SP-1 to SP-5